SKH St. Simon's Lui Ming Choi Secondary School Form 3 Mathematics Unit 1 Laws of Indices Tiered Assignment

 Name:
 Class:
 ()
 Date:
 Mark:

> NOTES

If *m* and *n* are integers and
$$a, b \neq 0$$
, then
1. $a^m \bullet a^n = a^{m+n}$
3. $(a^m)^n = a^{mn}$
5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
7. $a^0 = 1$
2. $\frac{a^m}{a^n} = a^{m-n}$
4. $(ab)^n = a^n b^n$
6. $a^{-n} = \frac{1}{a^n}$

LEVEL 1

1. Simplify $\frac{a^{-7}}{(a^2)^4}$ and express your answer with positive index.

2. Simplify $\frac{m^{-7}n^2}{m^4n^{-2}}$ and express your answer with positive indices.

3. Simplify $\frac{x^{-4}}{(x^2y^{-3})^3}$ and express your answer with positive indices.

4. Simplify $\frac{(m^2 n^{-1})^{-2}}{n^5}$ and express your answer with positive indices.

> LEVEL 2

5. Simplify $\frac{(2a^{-3}b)^4}{(4a^2b^{-5})^{-1}}$ and express your answer with positive indices.

SKH St. Simon's Lui Ming Choi Secondary School Form 3 Mathematics Unit 2 Formulas Tiered Assignment

 Name:
 Class:
 ()
 Date:
 Mark:

> NOTES

A formula is an equality relating two or more variables. e.g. $A = \frac{2}{3}B + 4$ is a formula and A is the subject of the formula. We can make B to be the subject of the formula as follow: $A = \frac{2}{3}B + 4$ $A - 4 = \frac{2}{3}B$ 3(A - 4) = 2B $B = \frac{3(A - 4)}{2}$

LEVEL 1

1. Make *a* the subject of the formula 5b = 3(2a + b).

2. Make k the subject of the formula $h = \frac{3+k}{2k}$.

3. Make x the subject of the formula $y-2 = \frac{1}{2}(5y-3x)$.

4. Make *n* the subject of the formula $\frac{6+5n}{2-m} = 4n$.

- 5. Consider two formulas x = a + b and $y = \frac{1}{2}(a b)$.
 - (a) Express b in terms of x and y.
 - (b) If x and y are both increased by 4, what is the change in the value of b?

SKH St. Simon's Lui Ming Choi Secondary School Form 3 Mathematics Unit 3 Identities and Factorization Tiered Assignment

 Name:
 Class:
 ()
 Date:
 Mark:

> NOTES

1.	Some Important Identities		
	(a) $a^2 - b^2 \equiv (a+b)(a-b)$		
	(b) $a^2 + 2ab + b^2 \equiv (a+b)^2$		
	(c) $a^2 - 2ab + b^2 \equiv (a - b)^2$		
2.	Cross-method		
	e.g. Factorize $x^2 + x - 2$.		
-2 can be written as $(+1)(-2)$ or $(-1)(+2)$.			
We apply the cross-method as follows:			
	1st trial	2nd trial	
	<i>x</i> \ /+1	-1	
	x — -2	+2	
	+x-2x	-x+2x	
	=-x	=+x	
$\therefore x^2 + x - 2 = (x - 1)(x + 2)$			

- 1. Factorize
 - (a) $9a^2 4b^2$,
 - **(b)** $9a^2 4b^2 12a + 8b$.

2. Factorize

- (a) $4m^2 16n^2$,
- **(b)** $4m^2 16n^2 4n + 2m$.

3. Factorize

- (a) $x^2 + 10xy + 25y^2$,
- **(b)** $x^2 + 10xy + 25y^2 2x 10y$.

- 4. Factorize
 - (a) $5x^2 125y^2$,
 - **(b)** $5x^2 125y^2 x + 5y$.

- 5. Factorize
 - (a) $a^2 + 4a 12$,
 - **(b)** $(b^2 b)^2 + 4(b^2 b) 12$.

SKH St. Simon's Lui Ming Choi Secondary School **Unit 4** Percentages **Form 3 Mathematics Tiered Assignment** Class: _____ Date: _____ Name: Mark: **NOTES** Percentage Change 1. (a) Percentage Change = $\frac{\text{new value - original value}}{100\%} \times 100\%$ original value (b) (i) If the original value is increased by x%, then new value = original value \times (1 + x%) (ii) If the original value is decreased by x%, then new value = original value \times (1 – x%) 2. Profit (a) Profit per cent = $\frac{\text{profit}}{\text{cost price}} \times 100\% = \frac{\text{selling price} - \text{cost price}}{\text{cost price}} \times 100\%$ (b) Selling price = cost price \times (1 + profit per cent) 3. Loss (a) Loss per cent = $\frac{\text{loss}}{\text{cost price}} \times 100\% = \frac{\text{cost price} - \text{selling price}}{\text{cost price}} \times 100\%$ (b) Selling price = cost price \times (1 – loss per cent) Discount 4. (a) Discount per cent = $\frac{\text{discount}}{\text{marked price}} \times 100\% = \frac{\text{marked price} - \text{selling price}}{\text{marked price}} \times 100\%$ (b) Selling price = marked price \times (1 – discount per cent) Interest 5. Let \$A be the amount, \$P be the principal, I be the interest, r% be the interest rate per period and *n* be the number of periods. (a) Simple interest (i) $I = P \times r\% \times n$ (ii) $A = P + I = P(1 + r\% \times n)$ (b) Compound interest (i) $A = P(1 + r\%)^n$ (ii) $I = A - P = P[(1 + r\%)^n - 1]$

- 1. Tom earns \$12 000 a month and spends 60% of his salary on rent.
 - (a) How much does he spend on rent per month?
 - (b) If the monthly rent is increased by \$1500, what percentage of his salary is spent on rent?

- 2. It is known that Henry is 162 cm tall and Henry is shorter than Peter by 10%.
 - (a) Find the height of Peter.
 - (b) If John is taller than Henry by 10%, are John and Peter of the same height? Explain your answer.

- **3.** A packet of candies is shared among three children Ada, Betty and Cindy. The number of Ada's candies is 25% more than that of Betty while the number of Betty's candies is 10% more than that of Cindy. It is given that Cindy has 240 candies.
 - (a) Find the total number of candies in the packet at the beginning.
 - (b) By what percentage is the number of Ada's candies more than that of Cindy's?

- **4.** A hawker bought 80 apples for \$200. He sold 60% of the apples at \$4 each, 30% of the apples at \$2.5 each and the rest at \$2 each.
 - (a) Find the total amount received from selling all the apples.
 - (b) Find the profit per cent.

- 5. Sally wants to deposit \$9000 in a bank for 3 years.
 - (a) If Bank A offers an interest rate of 5% p.a., compounded half-yearly, find the compound interest obtained by Sally after 3 years.(Give your answer correct to the nearest dollar.)
 - (b) It is known that the simple interest rate offered by Bank *B* is 5.5% p.a.. Which bank, *A* or *B*, should Sally deposit the money in order to get more interest after 3 years? Explain your answer.