# SKH St. Simon's Lui Ming Choi Secondary School Form 3 Mathematics Unit 1 Laws of Indices Tiered Assignment 

Name: $\qquad$ Class: $\qquad$ Date: $\qquad$ Mark: $\qquad$

## NOTES

If $m$ and $n$ are integers and $a, b \neq 0$, then

1. $a^{m} \bullet a^{n}=a^{m+n}$
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$
3. $\left(a^{m}\right)^{n}=a^{m n}$
4. $(a b)^{n}=a^{n} b^{n}$
5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
6. $\quad a^{-n}=\frac{1}{a^{n}}$
7. $a^{0}=1$

## LEVEL 1

1. Simplify $\frac{a^{-7}}{\left(a^{2}\right)^{4}}$ and express your answer with positive index.
2. Simplify $\frac{m^{-7} n^{2}}{m^{4} n^{-2}}$ and express your answer with positive indices.
3. Simplify $\frac{x^{-4}}{\left(x^{2} y^{-3}\right)^{3}}$ and express your answer with positive indices.
4. Simplify $\frac{\left(m^{2} n^{-1}\right)^{-2}}{n^{5}}$ and express your answer with positive indices.

## LEVEL 2

5. Simplify $\frac{\left(2 a^{-3} b\right)^{4}}{\left(4 a^{2} b^{-5}\right)^{-1}}$ and express your answer with positive indices.

# SKH St. Simon's Lui Ming Choi Secondary School Form 3 Mathematics Unit 2 Formulas <br> Tiered Assignment 

Name: $\qquad$ Class: $\qquad$ Date: $\qquad$ Mark: $\qquad$

NOTES

A formula is an equality relating two or more variables.
e.g. $A=\frac{2}{3} B+4$ is a formula and $A$ is the subject of the formula.

We can make $B$ to be the subject of the formula as follow:

$$
\begin{aligned}
A & =\frac{2}{3} B+4 \\
A-4 & =\frac{2}{3} B \\
3(A-4) & =2 B \\
B & =\frac{3(A-4)}{2}
\end{aligned}
$$

## LEVEL 1

1. Make $a$ the subject of the formula $5 b=3(2 a+b)$.
2. Make $k$ the subject of the formula $h=\frac{3+k}{2 k}$.
3. Make $x$ the subject of the formula $y-2=\frac{1}{2}(5 y-3 x)$.
4. Make $n$ the subject of the formula $\frac{6+5 n}{2-m}=4 n$.

## LEVEL 2

5. Consider two formulas $x=a+b$ and $y=\frac{1}{2}(a-b)$.
(a) Express $b$ in terms of $x$ and $y$.
(b) If $x$ and $y$ are both increased by 4 , what is the change in the value of $b$ ?

## SKH St. Simon's Lui Ming Choi Secondary School

## Form 3 Mathematics Unit 3 Identities and Factorization Tiered Assignment

Name: $\qquad$ Class: $\qquad$ Date: $\qquad$ Mark: $\qquad$

NOTES

1. Some Important Identities
(a) $a^{2}-b^{2} \equiv(a+b)(a-b)$
(b) $a^{2}+2 a b+b^{2} \equiv(a+b)^{2}$
(c) $a^{2}-2 a b+b^{2} \equiv(a-b)^{2}$
2. Cross-method
e.g. Factorize $x^{2}+x-2$.
-2 can be written as $(+1)(-2)$ or $(-1)(+2)$.
We apply the cross-method as follows:

| 1st trial | 2nd trial |
| :--- | :--- |
| $+x-2 x$ | -1 |
| $=-x$ | $=+x$ |

$$
\therefore \quad x^{2}+x-2=(x-1)(x+2)
$$

## LEVEL 1

1. Factorize
(a) $9 a^{2}-4 b^{2}$,
(b) $9 a^{2}-4 b^{2}-12 a+8 b$.
2. Factorize
(a) $4 m^{2}-16 n^{2}$,
(b) $4 m^{2}-16 n^{2}-4 n+2 m$.
3. Factorize
(a) $x^{2}+10 x y+25 y^{2}$,
(b) $x^{2}+10 x y+25 y^{2}-2 x-10 y$.
4. Factorize
(a) $5 x^{2}-125 y^{2}$,
(b) $5 x^{2}-125 y^{2}-x+5 y$.

LEVEL 2
5. Factorize
(a) $a^{2}+4 a-12$,
(b) $\left(b^{2}-b\right)^{2}+4\left(b^{2}-b\right)-12$.

# SKH St. Simon's Lui Ming Choi Secondary School Form 3 Mathematics Unit 4 Percentages <br> Tiered Assignment 

Name: $\qquad$ Class: $\qquad$ Date: $\qquad$ Mark: $\qquad$

## NOTES

1. Percentage Change
(a) Percentage Change $=\frac{\text { new value }- \text { original value }}{\text { original value }} \times 100 \%$
(b) (i) If the original value is increased by $x \%$, then new value $=$ original value $\times(1+x \%)$
(ii) If the original value is decreased by $x \%$, then new value $=$ original value $\times(1-x \%)$
2. Profit
(a) Profit per cent $=\frac{\text { profit }}{\text { cost price }} \times 100 \%=\frac{\text { selling price }- \text { cost price }}{\text { cost price }} \times 100 \%$
(b) Selling price $=$ cost price $\times(1+$ profit per cent $)$
3. Loss
(a) Loss per cent $=\frac{\text { loss }}{\text { cost price }} \times 100 \%=\frac{\text { cost price }- \text { selling price }}{\text { cost price }} \times 100 \%$
(b) Selling price $=$ cost price $\times(1-$ loss per cent $)$
4. Discount
(a) Discount per cent $=\frac{\text { discount }}{\text { marked price }} \times 100 \%=\frac{\text { marked price }- \text { selling price }}{\text { marked price }} \times 100 \%$
(b) Selling price $=$ marked price $\times(1-$ discount per cent $)$
5. Interest

Let $\$ A$ be the amount, $\$ P$ be the principal, $\$ I$ be the interest, $r \%$ be the interest rate per period and $n$ be the number of periods.
(a) Simple interest
(i) $I=P \times r \% \times n$
(ii) $A=P+I=P(1+r \% \times n)$
(b) Compound interest
(i) $A=P(1+r \%)^{n}$
(ii) $I=A-P=P\left[(1+r \%)^{n}-1\right]$

## LEVEL 1

1. Tom earns $\$ 12000$ a month and spends $60 \%$ of his salary on rent.
(a) How much does he spend on rent per month?
(b) If the monthly rent is increased by $\$ 1500$, what percentage of his salary is spent on rent?
2. It is known that Henry is 162 cm tall and Henry is shorter than Peter by $10 \%$.
(a) Find the height of Peter.
(b) If John is taller than Henry by $10 \%$, are John and Peter of the same height? Explain your answer.
3. A packet of candies is shared among three children Ada, Betty and Cindy. The number of Ada's candies is $25 \%$ more than that of Betty while the number of Betty's candies is $10 \%$ more than that of Cindy. It is given that Cindy has 240 candies.
(a) Find the total number of candies in the packet at the beginning.
(b) By what percentage is the number of Ada's candies more than that of Cindy's?
4. A hawker bought 80 apples for $\$ 200$. He sold $60 \%$ of the apples at $\$ 4$ each, $30 \%$ of the apples at $\$ 2.5$ each and the rest at $\$ 2$ each.
(a) Find the total amount received from selling all the apples.
(b) Find the profit per cent.

## LEVEL 2

5. Sally wants to deposit $\$ 9000$ in a bank for 3 years.
(a) If Bank $A$ offers an interest rate of $5 \%$ p.a., compounded half-yearly, find the compound interest obtained by Sally after 3 years.
(Give your answer correct to the nearest dollar.)
(b) It is known that the simple interest rate offered by Bank $B$ is $5.5 \%$ p.a.. Which bank, $A$ or $B$, should Sally deposit the money in order to get more interest after 3 years? Explain your answer.
