SKH St. Simon's Lui Ming Choi Secondary School Form 2 Mathematics Tiered Assignment Chapter 2 Identities and Factoriztion

Name: \qquad Class: \qquad Date: \qquad
Level 1

1. $(a+b)(a-b)=$
2. $(a+b)^{2}=$ \qquad
3. $(a-b)^{2}=$ \qquad
4. Prove that the equation $3(2 x-4)=2(-6+3 x)$ is an identity.
5. Determine whether each of the following equations is an identity.
(a) $(x+1)(2 x-1)=2 x(x+1)+(x-1)$
(b) $2 x(x-1)-x-5=(2 x-5)(x+1)$
6. If $(x-2)(x+5) \equiv x^{2}+P x+Q$, where P and Q are constants, find P and Q.
7. Expand the following.
(a) $(x-5)(x+5)$
(g) $(k+3)^{2}$
(b) $(6-x)(6+x)$
(h) $(1+7 n)^{2}$
(c) $(7+y)(7-y)$
(i) $(m-8)^{2}$
(d) $(2 x+7)(2 x-7)$
(j) $(3 p+1)^{2}$
(e) $(3 x-4)(3 x+4)$
(k) $(5 m+2 n)^{2}$
(f) $(4 x+5 y)(4 x-5 y)$
8. Factorize the following expressions.
(a) $9 c+9 d$
(d) $3 k x-9 k y-15 k z$
(b) $-a b-2 a$
(e) $8 a^{3}+20 a b^{2}-12 a$
(c) $3 a+2 a b-a c$
(f) $24 x^{2} y^{3}-40 x y^{3}-56 x^{2} y^{2}$
9. Expand the following.
(a) $(-4 a-3)(-4 a+3)$
(h) $(m n-4)(-m n-4)$
(b) $(-h+3 k)(3 k+h)$
(i) $(-3-5 n)^{2}$
(c) $2(3 m-1)(1+3 m)$
(j) $(-8 a+5 b)^{2}$
(d) $3(3 x+5 y)(3 x-5 y)$
(k) $3(2 x-y)^{2}$
(e) $(3-2 x y)(3+2 x y)$
(f) $\left(4 a+b^{2}\right)\left(4 a-b^{2}\right)$
(l) $\left(x-\frac{y}{8}\right)^{2}$
(g) $\left(-5-y^{3}\right)\left(-5+y^{3}\right)$
10. Factorize the following expressions.
(a) $3 m^{2} n+m^{2}-3 n^{2}-n$
(b) $4 p^{2}-3 q-2 p q+6 p$
(c) $-12 x^{2}-4 x y-18 x-6 y$
11. Without using a calculator, find the values of the following expressions.
(a) $77^{2}-23^{2}$
(b) 298×302
12. Without using a calculator, find the values of the following expressions.
(a) 205^{2}
(b) 47^{2}

Level 2

10. Factorize the following expressions.
(a) $2 a x+4 b x-2 c x+a y+2 b y-c y$
(b) $8 a x+6 b x-4 a y-3 b y+12 a+9 b$
11.

(a) Expand $(x+3 y)^{2}$.
(b) Hence, expand $(x+3 y-2)(x+3 y+2)$.
12. Expand the following.
(a) Expand $(2 x+9 y)(2 x-9 y)$.
(b) Using the result of (a), expand $\left(\frac{2 x}{3}+3 y\right)\left(\frac{x}{3}-\frac{3 y}{2}\right)$.
13. If $(x+3 M)(2 x-1)+4 \equiv x(2 x-7)+N$, where M and N are constants, find M and N.

SKH St. Simon's Lui Ming Choi Secondary School
 Form 2 Mathematics Tiered Assignment
 Chapter 3 Formulae

Name: \qquad Class: \qquad Date: \qquad

Level 1:

1. Simplify
(a) $\frac{4 a^{2} b^{3}}{2 a b}$
(d) $\frac{8 b-2 a}{a^{2}-4 a b}$
(b) $\frac{8 m-12 m^{2}}{12 m n}$
(e) $\frac{y x-2 x+y-2}{y-2}$
(c) $\frac{15 a x-3 a y}{20 b x-4 b y}$
2. Simplify
(a) $\frac{4 m}{n} \times \frac{5 n}{8 m}$
(c) $\frac{8 m^{4}}{r} \times \frac{n}{16 m} \div \frac{3 n}{r^{2}}$
(b) $\frac{q}{5 p} \div \frac{q^{2}}{10}$
(d) $\frac{b m-b n}{a x} \times \frac{3 c^{2}}{c n-c m}$
3. Simplify
(a) $\frac{5 n}{3 m}+\frac{n}{3 m}$
(e) $\frac{2 m}{3 m-4 n}-\frac{n}{2(4 n-3 m)}$
(b) $\frac{6 x}{3 x-4 y}-\frac{8 y}{3 x-4 y}$
(f) $1+\frac{1-4 y}{3 y}$
(c) $\frac{4}{5 n}-\frac{1}{m}$
(g) $\frac{6 x}{2 x+5 y}-2$
(d) $\frac{2 y}{3 x}+\frac{y}{2 x}-\frac{11 y}{12 x}$
4. Given that $T=t+273.15$, find the value of T if $t=32$.
5. Consider the formula $Q=y^{4}$. If $y=3$, find Q.
6. Consider the formula $y=\frac{x(x+1)}{2}$. If $x=-11$, find y.
7. Given that $v^{2}=u^{2}+2 a s$, find the value of a if $v=20, u=10$ and $s=15$.
8. Consider the formula $y=k x+b$. If $y=17, k=-3$ and $b=5$, find x.
9. Change the subject of each of the following formulae to the letter in the square brackets.
(a) $K=2 p t$
[p]
(b) $5+\frac{x}{y}=z$
[x]
10. Make y the subject of the formula $y-c=m(6-y)$.

Level 2:

11. Simplify
(a) $\frac{3}{a-2 b}+\frac{2}{2 b-a}$
(b) $\frac{2 x}{2 x-1}-\frac{x}{x+3}$
12. The perimeter $P \mathrm{~m}$ of a regular n-sided polygon of side $a \mathrm{~m}$ can be calculated by the formula $P=n a$. What is the length of a side of a pool in the shape of a regular octagon of perimeter 40 m ?
13. A pack consists of two pieces of chocolate in the shape of hemispheres as shown below. The diameters of their bases are $D \mathrm{~cm}$ and $d \mathrm{~cm}$ respectively. The total volume $V \mathrm{~cm}^{3}$ of chocolate in the pack can be calculated by the formula $V=\frac{1}{12} \pi\left(D^{3}+d^{3}\right)$. If $D=4$ and $d=2$, is $50 \mathrm{~cm}^{3}$ of chocolate enough to make 3 such packs? Explain your answer. (Take $\pi=3.14$.)

14. Make x the subject of the formula $\frac{1}{x}+\frac{2}{y}=\frac{r}{s}$.
15. The length, the width and the height of a gold brick in the shape of a rectangular block are $\ell \mathrm{cm}, w \mathrm{~cm}$ and $h \mathrm{~cm}$ respectively. The weight $M \mathrm{~g}$ of the gold brick can be calculated by the formula $M=19.3 \ell w h$.
(a) Express h in terms of M, ℓ and w.
(b) It is known that a gold brick in the shape of a rectangular block weighs 900 g . If its length is 12 cm and its width is 5 cm , what is the height?
(Give the answer correct to the nearest 0.1 cm .)
16. The size of each interior angle, I, of an n-sided regular polygon can be obtained by the formula $I=\frac{(n-2) \times 180^{\circ}}{n}$.
(a) Make n the subject of the formula.
(b) How many sides does a regular polygon have if each of its interior angles is 120° ?

SKH St. Simon's Lui Ming Choi Secondary School
 Form 2 Mathematics Tiered Assignment
 Chapter 5 Congruence Chapter 8 Similarly

Name: \qquad Class: \qquad)

Date: \qquad
Level 1
Find the unknowns in each of the following pairs of congruent triangles. [Nos. 1-2]

1. $\triangle H K G \cong \triangle U S T$

2. $\triangle M L N \cong \triangle Q R P$

Prove that the following pairs of triangles are congruent. [Nos. 3-4]
3.

4.

Determine which two triangles must be congruent and give a proof to explain your answer.
5.

Find the unknowns in each of the following pairs of similar triangles. [Nos. 6-7]
6. $\triangle A B C \sim \triangle L M N$

7. $\triangle D E F \sim \triangle R P Q$

Prove that the following pairs of triangles are similar. [Nos. 8-9]
8.

9.

10. In the figure, $C D A$ and $C E B$ are straight lines. Prove that $\triangle A B C \sim \triangle D E C$.

11.	12.	13.
14.	15.	16.

11. In the figure, $\triangle A B C \cong \triangle E F D$. Which of the following must be true?

A. $\quad a=b, p=q, x=28^{\circ}$
B. $a=b, p=q, x=52^{\circ}$
C. $a=p, b=q, x=28^{\circ}$
D. $a=p, b=q, x=52^{\circ}$
12. In the figure, $\triangle P Q R \cong \triangle S T R$. Which of the following may not be true?

A. $\angle Q=\angle T$
B. $\angle T R S=90^{\circ}$
C. $P R=S R$
D. $Q R=S T$
13. In the figure, $\triangle \mathrm{ABC} \sim \triangle \mathrm{XZY}$. Find $A B$ and $Y Z$.

A. $A B=12 \mathrm{~cm}, Y Z=20 \mathrm{~cm}$
B. $A B=12 \mathrm{~cm}, Y Z=30 \mathrm{~cm}$
C. $A B=27 \mathrm{~cm}, Y Z=20 \mathrm{~cm}$
D. $A B=27 \mathrm{~cm}, Y Z=30 \mathrm{~cm}$
14. It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{RQP} . A B=$ $10, P Q=20$ and $5 A C=2 R P$. Which of the following must be true?
A. $\quad B C=8, Q R=4$
B. $B C=8, Q R=25$
C. $B C=50, Q R=4$
D. $B C=50, Q R=25$
15. In the figure, $B P C$ is a straight line.

Which of the following must be true?
I. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PAC}$
II. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PBA}$
III. $\triangle \mathrm{PAC} \sim \triangle \mathrm{PBA}$
A. I only
C. II and III
only
B. I and III only
D. I, II and III
16. In the figure, $A E B, B F D$ and $C F E$ are straight lines. $A D=B E$ and $C E=B D$.

Which of the following must be true?
I. $\triangle A B D \cong \triangle B C E$
II. $\triangle A B D \sim \triangle F B E$
III. $\triangle A D B \sim \triangle F B C$
A. I only
C. II only
B. I and II only
D. I, II and III
17. In the figure, $A C$ and $B D$ intersect at E. It is given that $A D=B C$ and $A C=B D$.
(a) Prove that $\triangle A B D \cong \triangle B A C$.
(b) If $\angle A B D=32^{\circ}$, find $\angle D E C$.

18. In the figure, $A D C$ is a straight line and $\angle A B C=\angle B D C=90^{\circ}$.
(a) Prove that $\triangle A B C \sim \triangle B D C$.
(b) Prove that $B C^{2}=A C \times D C$.

SKH St. Simon's Lui Ming Choi Secondary School
 F2 Mathematics Tiered Assignment
 Chapter 9 linear equation in 2 unknowns

Name: \qquad Class : \qquad () Date:

Tier 1

Solve the following simultaneous equation in 2 unknowns.

1. $\left\{\begin{array}{l}y=x \\ 4 x+y=15\end{array}\right.$
2. $\left\{\begin{array}{l}7 y-x=-8 \\ x=3 y\end{array}\right.$
3. $\left\{\begin{array}{l}x=-2 y \\ x+3 y-5=0\end{array}\right.$
4. $\left\{\begin{array}{l}y=5 x-2 \\ x=y+6\end{array}\right.$
5. $\left\{\begin{array}{l}x-y=-8 \\ x+y=4\end{array}\right.$
6. $\left\{\begin{array}{l}3 x+2 y=-3 \\ 3 x-2 y=9\end{array}\right.$
7. $\left\{\begin{array}{l}6 x=11+y \\ 3 x=16-y\end{array}\right.$
8. $\left\{\begin{array}{l}2 x-5 y=-12 \\ -3 x+5 y=33\end{array}\right.$
9. $\left\{\begin{array}{l}b=2 a-5 \\ a+b=7\end{array}\right.$
10. $\left\{\begin{array}{l}2 h+k=3 \\ 5 h-k=-24\end{array}\right.$
11. $\left\{\begin{array}{l}m=2 n-1 \\ m=5-2 n\end{array}\right.$
12. $\left\{\begin{array}{l}a=7 b+13 \\ 6 a=7 b+8\end{array}\right.$
13. The sum of two numbers is 60 and their difference is 12 . Find these two numbers.
14. The sum of two numbers is 100 and the larger number is 3 times the smaller number. Find the smaller number.
15. There are some ducks and sheep on a farm. The total numbers of heads and feet for these animals are 48 and 132 respectively. How many ducks and how many sheep are there on the farm?
16. Solve $\left\{\begin{array}{l}y=7-2 x \\ x=-2 y-4\end{array}\right.$.
A. $x=-6, y=5$
B. $x=-5, y=6$
C. $x=5, y=-6$
D. $x=6, y=-5$
17. Solve $\left\{\begin{array}{l}2 h-3 k=-1 \\ 3 h+2 k=-34\end{array}\right.$.
A. $h=-9, k=-6$
B. $h=-8, k=-5$
C. $h=-7, k=-5$
D. $h=-6, k=-4$
18. The total price of 2 pencils and 9 erasers is $\$ 92$, while the total price of 8 pencils and 3 erasers is $\$ 104$. Find the price of a pencil.
A. $\$ 8$
B. $\$ 9$
C. $\$ 10$
D. $\$ 11$
19. In a bag, there are 18 prisms with 101 faces in total. If the bag contains triangular prisms and rectangular prisms only, how many triangular prisms are there?
A. 5
B. 7
C. 9
D. 11

Tier 2

Solve the following simultaneous equations in 2 unknowns
20. $3 h+8 k+3=-h-3 k-7=-4$
21. $\left\{\begin{array}{l}\frac{2}{7} m=3-n \\ \frac{4}{7} m-2 n+10=0\end{array}\right.$
22. Sam is 5 years older than Bill. Three years later, Bill's age will be $\frac{4}{5}$ of Sam's. How old is Bill now?
23. Edison is 11 years older than Ken. The age of Edison four years later will be 3 times the age of Ken three years ago. How old is Edison now?

SKH St. Simon's Lui Ming Choi Secondary School
 Form 2 Mathematics Tiered Assignment
 Chapter 12 Trigonometric Ratios

Name: \qquad Class: \qquad Date: \qquad

1. In the figure, $\sin \theta=$
A. $\frac{65}{97}$.
B. $\frac{72}{97}$.
C. $\frac{65}{72}$.

D. $\frac{97}{72}$. \square
2. Refer to the figure. Find the value of $\theta-\phi$, correct to the nearest degree.
A. 35°
B. 36°
C. 37°
D. 38°

3. Find θ in the figure, correct to the nearest degree.
A. 16°
B. 19°
C. 22°
D. 25°

Level 1
Find θ in each of the following figures. [Nos. 4-6]
(Give the answers correct to the nearest degree.)
4.

5.

6.

Find the value of x in each of the following figures. [Nos. 7-9]
(Give the answers correct to 3 significant figures.)
7.

8.

9.

10. Find θ in each of the following.
(Give the answers correct to the nearest 0.1°.)
(a) $9 \tan \theta=7$
(b) $\frac{1}{2} \tan \theta=6$
(c) $\frac{3}{4 \tan \theta}=\frac{1}{2}$

Find the unknown in each of the following figures. [Nos. 11-12]
11.

12.

13. $9-3 \tan \theta=6$
14. $2 \cos \theta=\frac{1}{\tan 30^{\circ}}$
15. Two towers $A B$ and $M N$ are 100 m apart, where the height of tower $A B$ is 18 m . A bird flies along a straight line from the roof of $A B$ to the roof of $M N$, which makes an angle of 16° with the horizontal. What is the height of tower $M N$?

