
SKH St. Simon's Lui Ming Choi Secondary School Form 2 Mathematics **Tiered Assignment Chapter 2 Identities and Factoriztion**

Name:

Class: ()

Date: _____

Level 1

- 2. $(a+b)^2 =$ _____
- Prove that the equation 3(2x 4) = 2(-6 + 3x) is an identity. 1.

Determine whether each of the following equations is an identity.

(a)
$$(x+1)(2x-1) = 2x(x+1) + (x-1)$$
 (b) $2x(x-1) - x - 5 = (2x-5)(x+1)$

(b)
$$2x(x-1)-x-5=(2x-5)(x+1)$$

3. If $(x-2)(x+5) \equiv x^2 + Px + Q$, where P and Q are constants, find P and Q.

- 4. Expand the following.
 - (a) (x-5)(x+5)
 - (b) (6-x)(6+x)
 - (c) (7+y)(7-y)
 - (d) (2x+7)(2x-7)
 - (e) (3x-4)(3x+4)
 - (f) (4x+5y)(4x-5y)

- (g) $(k+3)^2$
- (h) $(1+7n)^2$
- (i) $(m-8)^2$
- (j) $(3p+1)^2$
- (k) $(5m+2n)^2$

- 5. Factorize the following expressions.
 - (a) 9c + 9d
 - (b) -ab 2a
 - (c) 3a + 2ab ac

- (d) 3kx 9ky 15kz
- (e) $8a^3 + 20ab^2 12a$
- (f) $24x^2y^3 40xy^3 56x^2y^2$

6. Expand the following.

(a)
$$(-4a-3)(-4a+3)$$

(b)
$$(-h+3k)(3k+h)$$

(c)
$$2(3m-1)(1+3m)$$

(d)
$$3(3x+5y)(3x-5y)$$

(e)
$$(3-2xy)(3+2xy)$$

(f)
$$(4a+b^2)(4a-b^2)$$

(g)
$$(-5-y^3)(-5+y^3)$$

(h)
$$(mn-4)(-mn-4)$$

(i)
$$(-3-5n)^2$$

(j)
$$(-8a + 5b)^2$$

(k)
$$3(2x - y)^2$$

(1)
$$\left(x-\frac{y}{8}\right)^2$$

7. Factorize the following expressions.

(a)
$$3m^2n + m^2 - 3n^2 - n$$

(b)
$$4p^2 - 3q - 2pq + 6p$$

(c)
$$-12x^2 - 4xy - 18x - 6y$$

Without using a calculator, find the values of the following expressions.

(a)
$$77^2 - 23^2$$

Without using a calculator, find the values of the following expressions. 9.

(a)
$$205^2$$

Level 2

10. Factorize the following expressions.

(a)
$$2ax + 4bx - 2cx + ay + 2by - cy$$

(a)
$$2ax + 4bx - 2cx + ay + 2by - cy$$
 (b) $8ax + 6bx - 4ay - 3by + 12a + 9b$

- 11.
- (a) Expand $(x + 3y)^2$.
- (b) Hence, expand (x + 3y 2)(x + 3y + 2).

- 12. Expand the following.
 - (a) Expand (2x + 9y)(2x 9y).
 - (b) Using the result of (a), expand $\left(\frac{2x}{3} + 3y\right)\left(\frac{x}{3} \frac{3y}{2}\right)$.

13. If $(x + 3M)(2x - 1) + 4 \equiv x(2x - 7) + N$, where M and N are constants, find M and N.

SKH St. Simon's Lui Ming Choi Secondary School Form 2 Mathematics Tiered Assignment Chapter 3 Formulae

Name: _____ Class: ____ (___) Date: _____

Level 1:

1. Simplify

(a)
$$\frac{4a^2b^3}{2ab}$$

$$(d) \quad \frac{8b - 2a}{a^2 - 4ab}$$

$$(b) \quad \frac{8m - 12m^2}{12mn}$$

$$(e) \quad \frac{yx-2x+y-2}{y-2}$$

 $(c) \quad \frac{15ax - 3ay}{20bx - 4by}$

2. Simplify

(a)
$$\frac{4m}{n} \times \frac{5n}{8m}$$

(b)
$$\frac{q}{5p} \div \frac{q^2}{10}$$

(c)
$$\frac{8m^4}{r} \times \frac{n}{16m} \div \frac{3n}{r^2}$$

(d)
$$\frac{bm-bn}{ax} \times \frac{3c^2}{cn-cm}$$

3. Simplify

(a)
$$\frac{5n}{3m} + \frac{n}{3m}$$

(b)
$$\frac{6x}{3x-4y} - \frac{8y}{3x-4y}$$

$$(c) \quad \frac{4}{5n} - \frac{1}{m}$$

(d)
$$\frac{2y}{3x} + \frac{y}{2x} - \frac{11y}{12x}$$

(e)
$$\frac{2m}{3m-4n} - \frac{n}{2(4n-3m)}$$

(f)
$$1 + \frac{1 - 4y}{3y}$$

$$(g) \quad \frac{6x}{2x+5y}-2$$

4. Given that T = t + 273.15, find the value of T if t = 32.

5. Consider the formula $Q = y^4$. If y = 3, find Q.

6. Consider the formula $y = \frac{x(x+1)}{2}$. If x = -11, find y.

7. Given that $v^2 = u^2 + 2as$, find the value of a if v = 20, u = 10 and s = 15.

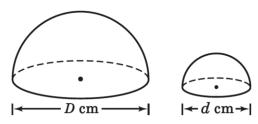
8. Consider the formula y = kx + b. If y = 17, k = -3 and b = 5, find x.

- 9. Change the subject of each of the following formulae to the letter in the square brackets.
 - (a) K = 2pt
- [*p*]

- (b) $5 + \frac{x}{y} = z$
- [*x*]

10. Make y the subject of the formula y - c = m(6 - y).

Level 2:


11. Simplify

(a)
$$\frac{3}{a-2b} + \frac{2}{2b-a}$$

(b)
$$\frac{2x}{2x-1} - \frac{x}{x+3}$$

12. The perimeter P m of a regular n-sided polygon of side a m can be calculated by the formula P = na. What is the length of a side of a pool in the shape of a regular octagon of perimeter 40 m?

13. A pack consists of two pieces of chocolate in the shape of hemispheres as shown below. The diameters of their bases are D cm and d cm respectively. The total volume V cm³ of chocolate in the pack can be calculated by the formula $V = \frac{1}{12} \pi (D^3 + d^3)$. If D = 4 and d = 2, is 50 cm³ of chocolate enough to make 3 such packs? Explain your answer. (*Take* $\pi = 3.14$.)

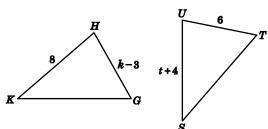
14. Make x the subject of the formula $\frac{1}{x} + \frac{2}{y} = \frac{r}{s}$.

- 15. The length, the width and the height of a gold brick in the shape of a rectangular block are ℓ cm, w cm and h cm respectively. The weight M g of the gold brick can be calculated by the formula $M = 19.3\ell wh$.
 - (a) Express h in terms of M, ℓ and w.
 - (b) It is known that a gold brick in the shape of a rectangular block weighs 900 g. If its length is 12 cm and its width is 5 cm, what is the height?

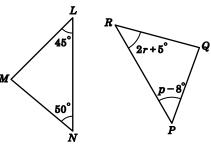
 (Give the answer correct to the nearest 0.1 cm.)

- 16. The size of each interior angle, *I*, of an *n*-sided regular polygon can be obtained by the formula $I = \frac{(n-2) \times 180^{\circ}}{n}$.
 - (a) Make n the subject of the formula.
 - (b) How many sides does a regular polygon have if each of its interior angles is 120°?

SKH St. Simon's Lui Ming Choi Secondary School Form 2 Mathematics Tiered Assignment

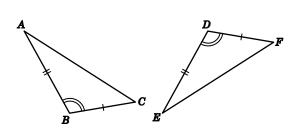

Chapter 5 Congruence Chapter 8 Similarly

Name:	Class:	()	Date:	

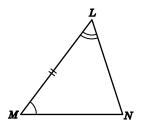

Level 1

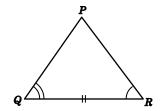
Find the unknowns in each of the following pairs of congruent triangles. [Nos. 1-2]

1. $\triangle HKG \cong \triangle UST$

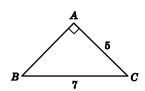


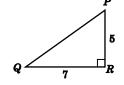
2. $\triangle MLN \cong \triangle QRP$

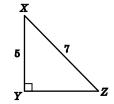



Prove that the following pairs of triangles are congruent. [Nos. 3-4]

3.

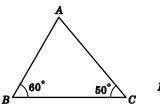

4.

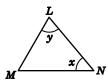


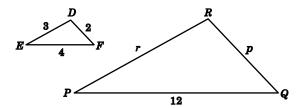


Determine which two triangles must be congruent and give a proof to explain your answer.

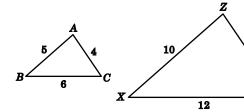
5.



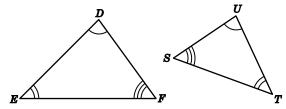



Find the unknowns in each of the following pairs of similar triangles. [Nos. 6-7]

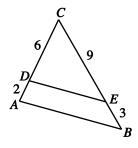
6. $\triangle ABC \sim \triangle LMN$



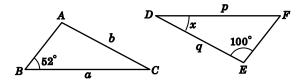
7. $\triangle DEF \sim \triangle RPQ$

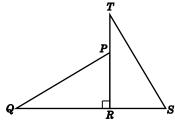


Prove that the following pairs of triangles are similar. [Nos. 8-9]

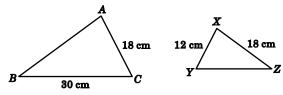

8.

9.

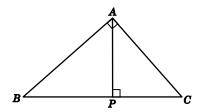

10. In the figure, CDA and CEB are straight lines. Prove that $\triangle ABC \sim \triangle DEC$.


Multiple Choice Question

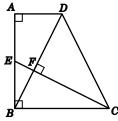
11.	12.	13.
14.	15.	16.


11. In the figure, $\triangle ABC \cong \triangle EFD$. Which of the following must be true?

- **A.** $a = b, p = q, x = 28^{\circ}$
- **B.** $a = b, p = q, x = 52^{\circ}$
- **C.** $a = p, b = q, x = 28^{\circ}$
- **D.** $a = p, b = q, x = 52^{\circ}$
- **12.** In the figure, $\triangle PQR \cong \triangle STR$. Which of the following may not be true?

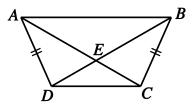


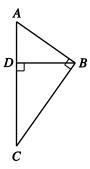
- **A.** $\angle Q = \angle T$
- **B.** $\angle TRS = 90^{\circ}$
- **C.** PR = SR
- **D.** QR = ST
- **13.** In the figure, $\triangle ABC \sim \triangle XZY$. Find AB and YZ.


- **A.** AB = 12 cm, YZ = 20 cm
- **B.** AB = 12 cm, YZ = 30 cm
- **C.** AB = 27 cm, YZ = 20 cm
- **D.** AB = 27 cm, YZ = 30 cm

- **14.** It is given that $\triangle ABC \sim \triangle RQP$. AB = 10, PQ = 20 and 5AC = 2RP. Which of the following must be true?
 - **A.** BC = 8, QR = 4
 - **B.** BC = 8, QR = 25
 - **C.** BC = 50, QR = 4
 - **D.** BC = 50, QR = 25
- **15.** In the figure, *BPC* is a straight line.

Which of the following must be true?


- I. $\triangle ABC \sim \triangle PAC$
- II. △ABC ~ △PBA
- III. $\triangle PAC \sim \triangle PBA$
- **A.** I only **C.** II and III only
- **B.** I and III only **D.** I, II and III
- **16.** In the figure, AEB, BFD and CFE are straight lines. AD = BE and CE = BD.


Which of the following must be true?

- I. $\triangle ABD \cong \triangle BCE$
- II. $\triangle ABD \sim \triangle FBE$
- III. $\triangle ADB \sim \triangle FBC$
- **A.** I only
- **C.** II only
- **B.** I and II only
- **D.** I, II and III

- **17.** In the figure, AC and BD intersect at E. It is given that AD = BC and AC = BD.
 - (a) Prove that $\triangle ABD \cong \triangle BAC$.
 - **(b)** If $\angle ABD = 32^{\circ}$, find $\angle DEC$.

- **18.** In the figure, ADC is a straight line and $\angle ABC = \angle BDC = 90^{\circ}$.
 - (a) Prove that $\triangle ABC \sim \triangle BDC$.
 - **(b)** Prove that $BC^2 = AC \times DC$.

SKH St. Simon's Lui Ming Choi Secondary School F2 Mathematics Tiered Assignment Chapter 9 linear equation in 2 unknowns

Name :_____() Date:

Tier 1

Solve the following simultaneous equation in 2 unknowns.

$$\mathbf{1.} \quad \begin{cases} y = x \\ 4x + y = 15 \end{cases}$$

$$\mathbf{2.} \quad \begin{cases} 7y - x = -8 \\ x = 3y \end{cases}$$

3.
$$\begin{cases} x = -2y \\ x + 3y - 5 = 0 \end{cases}$$

4.
$$\begin{cases} y = 5x - 2 \\ x = y + 6 \end{cases}$$

5.
$$\begin{cases} x - y = -8 \\ x + y = 4 \end{cases}$$

6.
$$\begin{cases} 3x + 2y = -3 \\ 3x - 2y = 9 \end{cases}$$

7.
$$\begin{cases} 6x = 11 + y \\ 3x = 16 - y \end{cases}$$

8.
$$\begin{cases} 2x - 5y = -12 \\ -3x + 5y = 33 \end{cases}$$

9.
$$\begin{cases} b = 2a - 5 \\ a + b = 7 \end{cases}$$

10.
$$\begin{cases} 2h + k = 3 \\ 5h - k = -24 \end{cases}$$

11.
$$\begin{cases} m = 2n - 1 \\ m = 5 - 2n \end{cases}$$

12.
$$\begin{cases} a = 7b + 13 \\ 6a = 7b + 8 \end{cases}$$

13.	The sum of two numbers is 60 and their difference is 12. Find these two numbers.
14.	The sum of two numbers is 100 and the larger number is 3 times the smaller number. Find the smaller number.
15.	There are some ducks and sheep on a farm. The total numbers of heads and feet for these
13.	animals are 48 and 132 respectively. How many ducks and how many sheep are there on the farm?

- **16.** Solve $\begin{cases} y = 7 2x \\ x = -2y 4 \end{cases}$ °
 - **A.** x = -6, y = 5
 - **B.** x = -5, y = 6
 - **C.** x = 5, y = -6
 - **D.** x = 6, y = -5
- **17.** Solve $\begin{cases} 2h 3k = -1 \\ 3h + 2k = -34 \end{cases}$ °
 - **A.** h = -9, k = -6
 - **B.** h = -8, k = -5
 - **C.** h = -7, k = -5
 - **D.** h = -6, k = -4
- **18.** The total price of 2 pencils and 9 erasers is \$92, while the total price of 8 pencils and 3 erasers is \$104. Find the price of a pencil.
 - **A.** \$8
 - **B.** \$9
 - **C.** \$10
 - **D.** \$11
- **19.** In a bag, there are 18 prisms with 101 faces in total. If the bag contains triangular prisms and rectangular prisms only, how many triangular prisms are there?
 - **A.** 5
 - **B.** 7
 - **C.** 9
 - **D.** 11

Tier 2

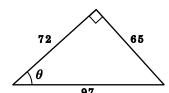
Solve the following simultaneous equations in 2 unknowns

20.
$$3h + 8k + 3 = -h - 3k - 7 = -4$$

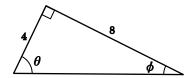
21.
$$\begin{cases} \frac{2}{7}m = 3 - n \\ \frac{4}{7}m - 2n + 10 = 0 \end{cases}$$

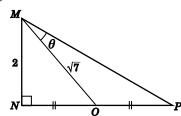
22. Sam is 5 years older than Bill. Three years later, Bill's age will be $\frac{4}{5}$ of Sam's. How old is Bill now?

23. Edison is 11 years older than Ken. The age of Edison four years later will be 3 times the age of Ken three years ago. How old is Edison now?


SKH St. Simon's Lui Ming Choi Secondary School

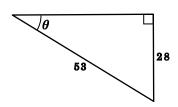
Form 2 Mathematics Tiered Assignment


Chapter 12 Trigonometric Ratios

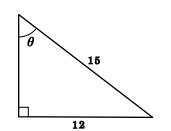

- **1.** In the figure, $\sin \theta =$
 - A.
 - В.
 - C.
 - D.

- Refer to the figure. Find the value of $\theta \phi$, correct to the nearest degree.
 - 35° A.
 - В. 36°
 - 37° C.
 - D. 38°

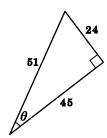
- **3.** Find θ in the figure, correct to the nearest degree.
 - A. 16°
 - В. 19°
 - C. 22°
 - D. 25°



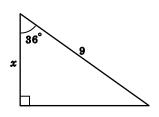
Level 1

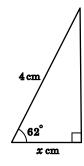

Find θ in each of the following figures. [Nos. 4–6]

(Give the answers correct to the nearest degree.)

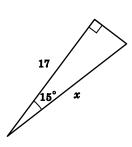

4.

5.


6.


Find the value of x in each of the following figures. [Nos. 7–9]

(Give the answers correct to 3 significant figures.)

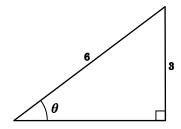

7.

8.

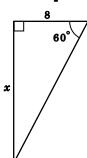
9.

10. Find θ in each of the following.

(Give the answers correct to the nearest 0.1° .)

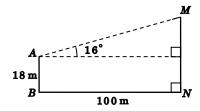

(a)
$$9 \tan \theta = 7$$

(b)
$$\frac{1}{2} \tan \theta = 6$$


(c)
$$\frac{3}{4 \tan \theta} = \frac{1}{2}$$

Find the unknown in each of the following figures. [Nos. 11–12]

11.


12.

13.
$$9 - 3 \tan \theta = 6$$

14.
$$2\cos\theta = \frac{1}{\tan 30^{\circ}}$$

15. Two towers AB and MN are 100 m apart, where the height of tower AB is 18 m. A bird flies along a straight line from the roof of AB to the roof of MN, which makes an angle of 16° with the horizontal. What is the height of tower MN?

